Corrigendum to: "X-coordinates of Pell equations as sums of two tribonacci numbers"

Eric F. Bravo
Departamento de Matemáticas, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia. eric.bravo@correounivalle.edu.co
Carlos A. Gómez
Departamento de Matemáticas, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia
carlos.a.gomez@correounivalle.edu.co

Florian Luca
School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa

Max Planck Institute for Mathematics,
Vivatsgasse 7, 53111 Bonn, Germany

Department of Mathematics, Faculty of Sciences, University of Ostrava, 30 Dubna 22, 70103 Ostrava 1, Czech Republic
florian.luca@wits.ac.za
September 10, 2019

Abstract

In this work, we correct an oversight from [1]. Key words and phrases. Pell equation, Tribonacci numbers.

2010 Mathematics Subject Classification. 11B39, 11J86.

1 Introduction

For a positive squarefree positive integer d and the Pell equation $X^{2}-d Y^{2}= \pm 1$, where $X, Y \in \mathbb{Z}^{+}$, it is well-known that all its solutions (X, Y) have the form $X+Y \sqrt{d}=X_{k}+Y_{k} \sqrt{d}=\left(X_{1}+Y_{1} \sqrt{d}\right)^{k}$ for some $k \in \mathbb{Z}^{+}$, where $\left(X_{1}, Y_{1}\right)$ be its smallest positive integer solution. Let $\left\{T_{n}\right\}_{n \geq 0}$ be the Tribonacci sequence given by $T_{0}=0, T_{1}=T_{2}=1, T_{n+3}=T_{n+2}+T_{n+1}+T_{n}$ for all $n \geq 0$. Let $U=\left\{T_{n}+T_{m}: n \geq m \geq 0\right\}$ be the set of non-negative integers which are sums of two Tribonacci numbers. In [1], we looked at Pell equations $X^{2}-d Y^{2}= \pm 1$ such that the containment $X_{\ell} \in U$ has at least two positive integer solutions ℓ. The following result was proved.

Theorem 1. For each squarefree integer d, there is at most one positive integer ℓ such that $X_{\ell} \in U$ except for $d \in\{2,3,5,15,26\}$.

Furthermore, for each $d \in\{2,3,5,15,26\}$, all solutions ℓ to $X_{\ell} \in U$ were given together with the representations of these X_{ℓ} 's as sums of two Tribonacci numbers. Unfortunately, there was an oversight in [1], which we now correct.

The following intermediate result is Lemma 4.1 in [1].
Lemma 1. Let $\left(m_{i}, n_{i}, \ell_{i}\right)$ be two solutions of $T_{m_{i}}+T_{n_{i}}=X_{\ell_{i}}$, with $0 \leq m_{i}<n_{i}$ for $i=1,2$ and $1 \leq \ell_{1}<\ell_{2}$, then

$$
m_{1}<n_{1} \leq 1535, \quad \ell_{1} \leq 1070 \quad \text { and } \quad n_{2}<2.5 \cdot 10^{42}
$$

The rest of the argument in [1] were just reductions of the above parameters. The first step of the reduction consisted in finding all the solutions to

$$
X_{\ell_{1}}=F_{n_{1}}+F_{m_{1}}, \quad \ell_{1} \in[1,1070] \quad 2 \leq m_{1}<n_{1} \leq 1535 .
$$

Unfortunately, the case $\ell_{1}=1$ was omitted in [1]. Here, we discuss the missing case $\ell_{1}=1$.
In order to reduce the above bound on n_{2} from Lemma 1, we don't consider the equation $P_{\ell_{1}}^{ \pm}\left(X_{1}\right)=X_{1}$ since there is no polynomial equation to solve, instead, we consider each minimal solution $\delta:=\delta\left(X_{1}, \epsilon\right)$ of Pell equation $X^{2}-d Y^{2}=\epsilon= \pm 1$, for each $X_{1}=T_{m_{1}}+T_{n_{1}}$, according to the bounds in Lemma 1. Thus, after some reductions using the Baker-Davenport method on the linear form in logarithms Γ_{1} and Γ_{2} from [1, inequalities 3.9 and 3.12], for $(m, n, \ell)=\left(m_{2}, n_{2}, \ell_{2}\right)$, one shows that the only range for the variables to be considered is

$$
\begin{equation*}
\ell_{1}=1, \quad 1 \leq m_{1}<n_{1} \leq 1811, \quad 1 \leq m_{2}<n_{2} \leq 3210, \quad \text { and } \quad 2 \leq \ell_{2} \leq 2220 \tag{1}
\end{equation*}
$$

Now, with this new bound on n_{2}, by the same procedure (LLL-algorithm and continued fractions) used on the linear form in logarithms Γ_{3}, Γ_{4} and Γ_{5} in [1, inequalities 3.15 to 3.26], we reduce again the bound on n_{1} given in the Lemma 1. Then, further cycles of reductions (for n_{2} with the new bound of n_{1}) on Γ_{1} and Γ_{2} yield the following result.

Lemma 2. Let (m_{i}, n_{i}, ℓ_{i}) be two solutions of $T_{m_{i}}+T_{n_{i}}=X_{\ell_{i}}$, with $0 \leq m_{i}<n_{i}$ for $i=1,2$. If $\ell_{1}=1$, then $1 \leq m_{1}<n_{1} \leq 160,1 \leq m_{2}<n_{2}<250$ and $2 \leq \ell_{2} \leq 175$.

An exhaustive search in this last range finds no new solutions. Hence, albeit the work in [1] missed one branch of computations which are described in this note, this does not affect the final result Theorem 1.

References

[1] E. F. Bravo, C. A. Gómez and F. Luca, X-coordinates of Pell equations as sums of two Tribonacci numbers, Period. Math. Hung. 77(2), 175-190 (2018)

