https://doi.org/10.1007/s10998-019-00305-1

Corrigendum to: "X-coordinates of Pell equations as sums of two tribonacci numbers"

ERIC F. BRAVO
Departamento de Matemáticas, Universidad del Valle,
Calle 13 No 100–00, Cali, Colombia.
eric.bravo@correounivalle.edu.co

Carlos A. Gómez
Departamento de Matemáticas, Universidad del Valle,
Calle 13 No 100–00, Cali, Colombia
carlos.a.gomez@correounivalle.edu.co

FLORIAN LUCA School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa

> Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

Department of Mathematics, Faculty of Sciences, University of Ostrava, 30 Dubna 22, 701 03 Ostrava 1, Czech Republic florian.luca@wits.ac.za

September 10, 2019

Abstract

In this work, we correct an oversight from [1].

Key words and phrases. Pell equation, Tribonacci numbers.

2010 Mathematics Subject Classification. 11B39, 11J86.

1 Introduction

For a positive squarefree positive integer d and the Pell equation $X^2-dY^2=\pm 1$, where $X,Y\in\mathbb{Z}^+$, it is well–known that all its solutions (X,Y) have the form $X+Y\sqrt{d}=X_k+Y_k\sqrt{d}=(X_1+Y_1\sqrt{d})^k$ for some $k\in\mathbb{Z}^+$, where (X_1,Y_1) be its smallest positive integer solution. Let $\{T_n\}_{n\geq 0}$ be the Tribonacci sequence given by $T_0=0,\ T_1=T_2=1,\ T_{n+3}=T_{n+2}+T_{n+1}+T_n$ for all $n\geq 0$. Let $U=\{T_n+T_m:n\geq m\geq 0\}$ be the set of non-negative integers which are sums of two Tribonacci numbers. In [1], we looked at Pell equations $X^2-dY^2=\pm 1$ such that the containment $X_\ell\in U$ has at least two positive integer solutions ℓ . The following result was proved.

Theorem 1. For each squarefree integer d, there is at most one positive integer ℓ such that $X_{\ell} \in U$ except for $d \in \{2, 3, 5, 15, 26\}$.

Furthermore, for each $d \in \{2, 3, 5, 15, 26\}$, all solutions ℓ to $X_{\ell} \in U$ were given together with the representations of these X_{ℓ} 's as sums of two Tribonacci numbers. Unfortunately, there was an oversight in [1], which we now correct.

The following intermediate result is Lemma 4.1 in [1].

Lemma 1. Let (m_i, n_i, ℓ_i) be two solutions of $T_{m_i} + T_{n_i} = X_{\ell_i}$, with $0 \le m_i < n_i$ for i = 1, 2 and $1 \le \ell_1 < \ell_2$, then

$$m_1 < n_1 \le 1535$$
, $\ell_1 \le 1070$ and $n_2 < 2.5 \cdot 10^{42}$.

The rest of the argument in [1] were just reductions of the above parameters. The first step of the reduction consisted in finding all the solutions to

$$X_{\ell_1} = F_{n_1} + F_{m_1}, \qquad \ell_1 \in [1, 1070] \qquad 2 \le m_1 < n_1 \le 1535.$$

Unfortunately, the case $\ell_1 = 1$ was omitted in [1]. Here, we discuss the missing case $\ell_1 = 1$.

In order to reduce the above bound on n_2 from Lemma 1, we don't consider the equation $P_{\ell_1}^{\pm}(X_1) = X_1$ since there is no polynomial equation to solve, instead, we consider each minimal solution $\delta := \delta(X_1, \epsilon)$ of Pell equation $X^2 - dY^2 = \epsilon = \pm 1$, for each $X_1 = T_{m_1} + T_{n_1}$, according to the bounds in Lemma 1. Thus, after some reductions using the Baker–Davenport method on the linear form in logarithms Γ_1 and Γ_2 from [1, inequalities 3.9 and 3.12], for $(m, n, \ell) = (m_2, n_2, \ell_2)$, one shows that the only range for the variables to be considered is

$$\ell_1 = 1, \quad 1 \le m_1 < n_1 \le 1811, \quad 1 \le m_2 < n_2 \le 3210, \quad \text{and} \quad 2 \le \ell_2 \le 2220.$$
 (1)

Now, with this new bound on n_2 , by the same procedure (LLL–algorithm and continued fractions) used on the linear form in logarithms Γ_3 , Γ_4 and Γ_5 in [1, inequalities 3.15 to 3.26], we reduce again the bound on n_1 given in the Lemma 1. Then, further cycles of reductions (for n_2 with the new bound of n_1) on Γ_1 and Γ_2 yield the following result.

Lemma 2. Let (m_i, n_i, ℓ_i) be two solutions of $T_{m_i} + T_{n_i} = X_{\ell_i}$, with $0 \le m_i < n_i$ for i = 1, 2. If $\ell_1 = 1$, then $1 \le m_1 < n_1 \le 160$, $1 \le m_2 < n_2 < 250$ and $2 \le \ell_2 \le 175$.

An exhaustive search in this last range finds no new solutions. Hence, albeit the work in [1] missed one branch of computations which are described in this note, this does not affect the final result Theorem 1.

References

[1] E. F. Bravo, C. A. Gómez and F. Luca, X-coordinates of Pell equations as sums of two Tribonacci numbers, Period. Math. Hung. 77(2), 175–190 (2018)